9 research outputs found

    One-hit wonders of genomic instability

    Get PDF
    Recent data show that cells from many cancers exhibit massive chromosome instability. The traditional view is that the gradual accumulation of mutations in genes involved in transcriptional regulation and cell cycle controls results in tumor development. This, however, does not exclude the possibility that some mutations could be more potent than others in destabilizing the genome by targeting both chromosomal integrity and corresponding checkpoint mechanisms simultaneously. Three such examples of "single-hit" lesions potentially leading to heritable genome destabilization are discussed. They include: failure to release sister chromatid cohesion due to the incomplete proteolytic cleavage of cohesin; massive merotelic kinetochore misattachments upon condensin depletion; and chromosome under-replication. In all three cases, cells fail to detect potential chromosomal bridges before anaphase entry, indicating that there is a basic cell cycle requirement to maintain a degree of sister chromatid bridging that is not recognizable as chromosomal damage

    CTCF mediates chromatin looping via N-terminal domain-dependent cohesin retention

    Get PDF
    The DNA-binding protein CCCTC-binding factor (CTCF) and the cohesin complex function together to shape chromatin architecture in mammalian cells, but the molecular details of this process remain unclear. Here, we demonstrate that a 79-aa region within the CTCF N terminus is essential for cohesin positioning at CTCF binding sites and chromatin loop formation. However, the N terminus of CTCF fused to artificial zinc fingers was not sufficient to redirect cohesin to non-CTCF binding sites, indicating a lack of an autonomously functioning domain in CTCF responsible for cohesin positioning. BORIS (CTCFL), a germline-specific paralog of CTCF, was unable to anchor cohesin to CTCF DNA binding sites. Furthermore, CTCF-BORIS chimeric constructs provided evidence that, besides the N terminus of CTCF, the first two CTCF zinc fingers, and likely the 3D geometry of CTCF-DNA complexes, are also involved in cohesin retention. Based on this knowledge, we were able to convert BORIS into CTCF with respect to cohesin positioning, thus providing additional molecular details of the ability of CTCF to retain cohesin. Taken together, our data provide insight into the process by which DNA-bound CTCF constrains cohesin movement to shape spatiotemporal genome organization

    Comparative analyses of CTCF and BORIS occupancies uncover two distinct classes of CTCF binding genomic regions.

    Get PDF
    BackgroundCTCF and BORIS (CTCFL), two paralogous mammalian proteins sharing nearly identical DNA binding domains, are thought to function in a mutually exclusive manner in DNA binding and transcriptional regulation.ResultsHere we show that these two proteins co-occupy a specific subset of regulatory elements consisting of clustered CTCF binding motifs (termed 2xCTSes). BORIS occupancy at 2xCTSes is largely invariant in BORIS-positive cancer cells, with the genomic pattern recapitulating the germline-specific BORIS binding to chromatin. In contrast to the single-motif CTCF target sites (1xCTSes), the 2xCTS elements are preferentially found at active promoters and enhancers, both in cancer and germ cells. 2xCTSes are also enriched in genomic regions that escape histone to protamine replacement in human and mouse sperm. Depletion of the BORIS gene leads to altered transcription of a large number of genes and the differentiation of K562 cells, while the ectopic expression of this CTCF paralog leads to specific changes in transcription in MCF7 cells.ConclusionsWe discover two functionally and structurally different classes of CTCF binding regions, 2xCTSes and 1xCTSes, revealed by their predisposition to bind BORIS. We propose that 2xCTSes play key roles in the transcriptional program of cancer and germ cells

    The Structural Complexity of the Human BORIS Gene in Gametogenesis and Cancer

    Get PDF
    BORIS/CTCFL is a paralogue of CTCF, the major epigenetic regulator of vertebrate genomes. BORIS is normally expressed only in germ cells but is aberrantly activated in numerous cancers. While recent studies demonstrated that BORIS is a transcriptional activator of testis-specific genes, little is generally known about its biological and molecular functions.Here we show that BORIS is expressed as 23 isoforms in germline and cancer cells. The isoforms are comprised of alternative N- and C-termini combined with varying numbers of zinc fingers (ZF) in the DNA binding domain. The patterns of BORIS isoform expression are distinct in germ and cancer cells. Isoform expression is activated by downregulation of CTCF, upregulated by reduction in CpG methylation caused by inactivation of DNMT1 or DNMT3b, and repressed by activation of p53. Studies of ectopically expressed isoforms showed that all are translated and localized to the nucleus. Using the testis-specific cerebroside sulfotransferase (CST) promoter and the IGF2/H19 imprinting control region (ICR), it was shown that binding of BORIS isoforms to DNA targets in vitro is methylation-sensitive and depends on the number and specific composition of ZF. The ability to bind target DNA and the presence of a specific long amino terminus (N258) in different isoforms are necessary and sufficient to activate CST transcription. Comparative sequence analyses revealed an evolutionary burst in mammals with strong conservation of BORIS isoproteins among primates.The extensive repertoire of spliced BORIS variants in humans that confer distinct DNA binding and transcriptional activation properties, and their differential patterns of expression among germ cells and neoplastic cells suggest that the gene is involved in a range of functionally important aspects of both normal gametogenesis and cancer development. In addition, a burst in isoform diversification may be evolutionarily tied to unique aspects of primate speciation

    Subcellular Localization of Bacillus subtilis SMC, a Protein Involved in Chromosome Condensation and Segregation

    No full text
    We have investigated the subcellular localization of the SMC protein in the gram-positive bacterium Bacillus subtilis. Recent work has shown that SMC is required for chromosome condensation and faithful chromosome segregation during the B. subtilis cell cycle. Using antibodies against SMC and fluorescence microscopy, we have shown that SMC is associated with the chromosome but is also present in discrete foci near the poles of the cell. DNase treatment of permeabilized cells disrupted the association of SMC with the chromosome but not with the polar foci. The use of a truncated smc gene demonstrated that the C-terminal domain of the protein is required for chromosomal binding but not for the formation of polar foci. Regular arrays of SMC-containing foci were still present between nucleoids along the length of aseptate filaments generated by depleting cells of the cell division protein FtsZ, indicating that the formation of polar foci does not require the formation of septal structures. In slowly growing cells, which have only one or two chromosomes, SMC foci were principally observed early in the cell cycle, prior to or coincident with chromosome segregation. Cell cycle-dependent release of stored SMC from polar foci may mediate segregation by condensation of chromosomes

    Cell cycle-dependent localization of two novel prokaryotic chromosome segregation and condensation proteins in Bacillus subtilis that interact with SMC protein

    No full text
    Disruption of ypuG and ypuH open reading frames in Bacillus subtilis leads to temperature-sensitive slow growth, a defect in chromosome structure and formation of anucleate cells. The genes, which were named scpA and scpB, were found to be epistatic to the smc gene. Fusions of ScpA and ScpB to the fluorescent proteins YFP or CFP showed that both proteins co-localize to two or four discrete foci that were present at mid-cell in young cells, and within both cell halves, generally adjacent to chromosomal origin regions, in older cells. ScpA and ScpB foci are associated with DNA and depend on the presence of SMC and both Scps. ScpA and ScpB are associated with each other and with SMC in vivo, as determined using the FRET technique and immunoprecipitation assays. Genes similar to scpA and scpB are present in many bacteria and archaea, which suggests that their gene products form a condensation complex with SMC in most prokaryotes. The observed foci could constitute condensation factories that pull DNA away from mid-cell into both cell halves

    Ubc9 Regulates Mitosis and Cell Survival during Zebrafish Development

    No full text
    Many proteins are modified by conjugation with Sumo, a gene-encoded, ubiquitin-related peptide, which is transferred to its target proteins via an enzymatic cascade. A central component of this cascade is the E2-conjugating enzyme Ubc9, which is highly conserved across species. Loss-of-function studies in yeast, nematode, fruit fly, and mouse blastocystes point to multiple roles of Ubc9 during cell cycle regulation, maintenance of nuclear architecture, chromosome segregation, and viability. Here we show that in zebrafish embryos, reduction of Ubc9 activity by expression of a dominant negative version causes widespread apoptosis, similar to the effect described in Ubc9-deficient mice. However, antisense-based knock down of zygotic ubc9 leads to much more specific defects in late proliferating tissues, such as cranial cartilage and eyes. Affected cartilaginous elements are of relatively normal size and shape, but consist of fewer and larger cells. Stainings with mitotic markers and 5-Bromo-2′-deoxyuridine incorporation studies indicate that fewer chondrocyte precursors are in mitosis, whereas the proportion of cells in S-phase is unaltered. Consistently, FACS analyses reveal an increase in the number of cells with a DNA content of 4n or even 8n. Our data indicate an in vivo requirement of Ubc9 for G2/M transition and/or progression through mitosis during vertebrate organogenesis. Failed mitosis in the absence of Ubc9 is not necessarily coupled with cell death. Rather, cells can continue to replicate their DNA, grow to a larger size, and finish their normal developmental program
    corecore